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THE TIME-HISTORY OF A SATELLITE 

AROUND AN OBLATE PLANExll ; 
1 

M. C. Ecksteint, Y. Y. Shitt, and J. Kevorkian tft 

ABSTRACT 

In the previous work on the motion of a close satellite around an oblate 
planet, the orbital elements and perturbations have been described as functions 
of the central angle between the instantaneous node and the satellite. A 
complete theory, however, requires the elements and perturbations as functions 
of the time. 
between node and satellite is presented here. 
mathematically nothing but a quadrature, it is practically quite complicated 
because the evaluation of the occurring integral requires some rather lengthy 
algebraic manipulations. Part of the calculations are avoided by using a new 
technique to numerically evaluate certain coefficients that depend only on 
the initial conditions. 
certain terms that otherwise would require consideration o f  higher order terms 
in the differential equations. 

Therefore the relationship between time and the central angle 

Although the problem is 

Furthermore, the energy integral is used to evaluate 
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1. IWTRODUCTION 

I 
Eckstein, Shi, and Kevorkian (i96b; discussed the geometry of the orbit  of a 

I satellite around an oblate planet. Particular emphasis was given t o  the 

nature of the orbi t  near "the c r i t i c a l  inclination" and t o  the question of 

defining the motion for  all inclinations by means of uniform asymptotic 

expansions. This paper is a continuation of the mentioned reference and 

discusses the time-history of the motion. 

the cited reference w i l l  be used throughout, and equations shown there w i l l  

be referred t o  by t h e  corresponding number followed by an asterisk. 

The notation and definitions of 

"he solution of the time-history of the motion is formally very simple, 

since (cf. (3.5')) it reduces t o  a quadrature once the orbi t  has been 

defined. 

formula f o r  the time, correct t o  some order, is quite involved for the 

following reasons. 

However, the practical  problem of exhibiting an explicit  analytic 

Inclusion of short-period tenus i n  the solution introduces considerable 

algebraic complexity i n  t h i s  problem. 

by using an averaged different ia l  equation 88 a star t ing point for calculating 

the first approximation t o  the long-period and secular terms i n  the t i m e -  

history. 

define the tine-history completely t o  order E. 

of course eliminates the  advantage of using the eccentric anomaly as an 

independent variable. Therefore, short-period terms are expressed by their 

convergent Fourier ser ies  expansions in  terms of 0 ,  the central  angle between 

the instantaneous node and the radius vector. 

Struble (1962) neglected these terms 

I n  t h i s  paper all terms i n  the solution are retained i n  order t o  

"he presence of perturbations 

1 



In addition to the algebraic complexity of the problem where short-period 

terms are included, the inherent difficulty associated with the quadrature 

of the equation for dt/dt$ is the presence of long-period terms on the right 

hand side. 

multiples of E+. )  

integration, it is necessary to consider terms of order E in order to 

include all long-period terms of order in the solution. Thus, the major 

difficulty in deriving the solution for t correct to order E stems from the 

presence of certain unknown long-period terms of order 

(These are trigonometric terms whose arguments are integer 

Since such terms drop in order by one power of E after 
n+l 

in dt/dt$. 

To evaluate these terms would in general require consideration of perturbations 

of order for the inclination and reciprocal radius, However, in this 

particular case it is shown that the existence of the energy integral is 

sufficient to define all long-period terms that arise to order E , 

Y 

2 

In order to avoid excessive algebraic manipulations, some of the coefficients 

in the present solution are not evaluated literally. 

occur in expressions where the general form is known and they may be expressed 

either as definite integrals or as the solutions of systems of linear algebraic 

equations. 

only evaluate them numerically once for each set of initial conditions. 

These coefficients 

As these coefficients are constant for any given motion, one need 

* 
Briefly this is due to the fact that the long-period behavior of term of 
order E' is governed by boundedness criteria on terms of order E n+B . 

2 



2. 

2.1 

DISCUSSION 

The Dif feren t ia l  Equation f o r  t h e  Time 

Struble  (1960) gives t h e  following general r e s u l t  f o r  t h e  rate of change of 4 

f o r  a problem with an a r b i t r a r y  Cylindrically symmetric potent ia l .  

2 3 9 = pu + cos i cos e E 
2 ae  d t  cos i p s i n  i sin 8 (2.1) 

au A f t e r  subs t i tu t ing  for 0 and 

one obtains 

*am (3,5h*) and (3.2.) and some manipulation 

cos 5 i 2 2 4 cu 5 2 4 
s in  41 + E [4 5 sin 4 + 28 3 cos i sin i s i n  4 d t  cos i - = - - E[2 - 

P P 3 P U  
2 d4 pu 

cu 5 3 

P 
- 12 - cos i sin241 + o(E 3 

Upon subs t i tu t ion  of t h e  expansions f o r  i 

(2.2) reduces t o  

cos io 

P O  

a t  
G = T -  

2 1  
+ E  r-5 

COS i 
0 

s i n  io 
€ 1 2  il + 2 - 

P"0 *"O 
3 

cos i sin io 
0 - 

PU0 

(2.2) 

and u i n t o  t h e  r i g h t  hand s ide,  

d 

5 
u + 2 -sin 01 COS i 0 2  
1 3 

"0 

s i n  i cos i 

5 cos io 
s i n  + + 2 - u1 s i n  4 2 

4 
cos io cos io s in  io 

3 - 2 3 u2 + l0 i l  
PU0 uo uo 
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0 5  2 4 cu 9 
0 4  cos i 

s i n  $I + 28 - cos io s i n  io s i n  9 + 4 7  P P 3 

5 2 3 cu - 12 2 cos io s i n  91 + O(E 3 P 
(2.3) 

All terms of the order uni ty  and E on the  r i g h t  hand side of (2.3) a r e  given i n  

t h e  or ig ina l  reference of t he  authors. 

solution fo r  t t o  order E must a l so  include consideration of t he  long-period 

terms proportional t o  c2 i n  (2.3). This necess i ta tes  the  evaluation of i2 and 

u occurring t o  order E i n  (2.3). The lengthy expressions for  these two 

quant i t ies  which had not been computed e a r l i e r  are shown i n  Appendix 1. 

addition, t he  leading term of (2.3), viz .  cos io / pu:, contains the  unknown 

terms io2 and e As was pointed out i n  the  o r ig ina l  reference 

the  determination of these terms requires  the  knowledge of the  d i f f e r e n t i a l  

However, as mentioned previously, a 

2 
2 

I n  

2 t o  order E . 2 

equations f o r  i and e cor rec t  t o  order E 3 . It w i l l  be shown i n  the next sect ion 

tha t  f o r  t he  present case, one can deduce the  form i n  which these terms occur by 

using the  energy in tegra l .  

2.2 Use of the Energy In tegra l  t o  Compute Long-Period Terms 

The energy in t eg ra l  

can be brought t o  the  following exact form i n  terms of t he  present var iables  



(2.5) 4 4 2 2 5 -1 + c 2 a 5  (14 s i n  i s i n  4 - 12 sin i sin 0 + ] 5 

Here, E i s  the energy constant expressible in  terms of the i n i t i a l  conditions, 

and the potential  U, given by (3.p),  has been used. 

knowledge of the orbit  (i.e., u($,E), i ( 9 , E ) )  together w i t h  dt/dg, as given 

by (2.3) t o  any order E 

are substituted into (2.5). 

any order. 

w i l l  be invoked. The orbit  defined by u and i i s  known t o  O(E  ) and it w i l l  

It is clear that  

n should lead t o  an identity t o  O(cn) when these values 

Thus, one could use (2.5) t o  check the solution t o  

In the present case however, a converse use of the  energy integral  

2 

be assumed that these results are f ree  of algebraic errors. The energy integral  

w i l l  then be used t o  define those terms of dt /d+ which are unknown t o  the 

order the calculations have been carried out. 

of the  results used for u and i wi l l  be the cancellation of a l l  known terms I 

a f t e r  substitution into (2.5) leaving only a definition of the unknovn long- 

period terms one seeks. 

A par t ia l  check of the accuracy 
, 

I 

As was pointed out earlier, the long period terms of order c2 i n  the leading 

term of (2.3) are unknown. To evaluate these, cos io / pu: is expanded i n  its 

Fourier series as shown below 

2 + 1 cos io 

PU0 0 

-= 

5 



The terms under the summation sign in the above have a short period and hence 

need not be evaluated to O ( E  1. Conversely, it is necessary to compute the 

. 
2 

form of the first term, p3/cos 3 i (1 - e2)3'2 correct to O ( E  2 ) since this term 
0 

depends only on $ (or TI .  It will be shown in what follows that substitution 

of all known terms into the energy integral leads to precisely the expression 

for the above term. 

When dt/d$ is eliminated from (2.5) by using (2.2) one obtains 

2 2 cos l0i 4 6 cos i 2 2 du 2 cos i (z) = I, - E [ ~ U  7 sin 03 + E 112u '7 sin 0 
P P P 

U 3 6  2 4 U 3 6  2 + 56c 7; COS i sin i sin - 24c 7; cos i sin $1 
P P 

(2.7) 
4 4 2 2 6  + E ~ C U ~  (14 sin i sin $ - 12 sin i sin 4 + F)} 

After substituting the expansions for the variables on the right hand side of 

(2.7) in the form assumed in the original reference one obtains after some 

manipulation and 

2 cos i 
E 0 

2 2  
P 

- 2  

ordering 

aul au0 au0 au 

a 4  a $  a; 
6 

0 
au 2 2 cos io 

uo) - (+I + E{-  2--- 2-- + uo (2 2 - 
P 

cos -i 2 sin 21 cos i 
0 il (E + uo) + 2 u l ( d  - u0) - 4 4 U o [ 2 E  0 

P P P 
2 

2 2 2 COS i 
2 + u0(2 - p uo)lsin2I$ + - - O u 3(1 - 3 sin io sin $1) 

0 
P2 cos i 

0 
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. 

sin 2i 

P 
0 

cos 2i 
2 
P 

2 ulil 0 (E + uo)i: - 2 
sin 2i0 

2 (E + uo)i2 - 2 - 2  
P 

5 
2 cos i sin i 

0 + 48 i u ( E  + uo) sin 4 
2 

0 0 
cos i 

l o  
P 

+ 2(- 2 - Uo)U2 - "1 
P 

3 
0 i u sin 2 + 6 cos i sin i cos i 2 0 - 8 ,+ ( E  + 2u )u sin 4 - 16 2 l o  

P 0 1  
P 

2 sin 4i0 
3 ilu: sin 4 i u  - sin 2i0 4 cos i 

P 
2 
P l o  O u:u1 sin o - - + 12 2 

P2 
2 

2 2 cos io 
+ 2 - u 2u (1 - 3 sin io sin 0 )  2 0 1  

P 
loi  

4 2 cos 
+ [z + u0(2 - +- u0)1h2 .+ uo2 sin o 

cos i P 
0 

6 
2 cos i 6 

2 4 0 cos io 
+ 56c 7 u: sin io sin @ - 24c '7 u: sin O] 

P P 
6 

2 2 2 cos i 
'+ u," s in  4 (1 - 3 sin io sin $1 - 
P 

z 
cos i 2 2 4 4 3 

+ cu05 2 o (5 - u sin io sin 4 + 14 sin io sin 4 ) )  = o(C: 1 

(2.8) 
P 

In the above the known expressions for uo, ul, u2, il, and i2 have not yet 

been used. 

terms cancel identically as expected, and what remains is the following 

expression for the long-period term under consideration. 

If these results are now substituted into (2 .8) ,  all short-period 
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6 
2 cos i 2 

2 cos io 
- ( l - e ) = - 2 E +  e 2 

P 
+ e2)(1 - 3 cos io) 

2 2 
+ e (1 + COS io) COB 20) 

Actually, what is needed is the negative three-halves power of (2.9) correct to 

0(s2). This can be easily computed once the quantities denoted by r) , n2, and 

n4 have been defined. 
0 

Before discussing the evaluation of n 

the term of order E in (2.91, e and i 

order terms in these expansions are no longer negligible. 

the evaluation of (3.15*) and (3.20") e and io or (e* and i * )  were replaced 

by eo* and iio* since the solution was valid only to O ( E )  there. 

one need only use e 

n and Ob, it is pointed out that in 
0' 2, 

have not been expanded because the higher 
0 

In contrast, for 

0 

However, 

and ioo for the values of e and i 
0 0 

occurring in the term 

proportional to E'in (2.9). 

Thus no, ql, and n4 formally depend on the initial values e and io,. The 
0 

form of the term of O(sz) in (2.9) can be deduced by inspection of the terms 

of 0(c2) in (2.8). 

SUI 

Each of these may be expressed as the following double 

8 2  
1 1 ank cos[n(+ - w )  + 2koI 

n=O k=-2 

where the a are functions of e and i 
nk 0 00 



Row the identity (2.8) must be independent of 0 to any order in E. 

particular, to O(E ) all the contributions a- coe[r?($ - o) + - *a] imst cancel 

when n d 0 leaving only terms which can be brought to the form shown in (2.9). 

In 
2 

l Eniart-astely, the expiicit evaiuation of 1 n2, and n4 in terms of i and 
00 

e requires extremely involved algebraic calculations. Furthermore, since 

the energy integral has already been used in arriving to this stage there is no 

independent procedure for checking the results if one were to actually derive 

explicit formulae for q0, TI,., and TI,,. 

I 0 

ThereIore, the following direct scheme for computing the numerical value of 

these functions for any set of initial conditions is proposed. 

defined in Appendix 2, denote the lengthy expression for the terms of order 

Let E2(w), 

in (2.8). Even though the form shown in the Appendix contains 0 explicitly, 

it was pointed out that upon simplification the terns depending uDon + must 
cancel identically. Thus. strictly speaking, E is a function of w and the two 

initial values eo and im. 

show that upon simplification E2 vill reduce to the following form 

2 
Furthermore, it is relatively straightforward to 

(2.10) 

The next step consisting of exhibiting the explicit dependence of the ni upon 

tie initial values eo, and im, is very esduous. 

the numerical value of the n. for any given pair eo, and i 

The problem of predicting 

is however quite 
1 00' 

9 



simple. For any value of w and a given pair e and i (2.10) is a linear 

algebraic equation for the three ni, 

side can be computed from the definition of E 

hand side contains two coefficients which depend on w. 

values of w are chosen, (2.10) produces three linear equations for the ni. 

O *  00’ 

The numerical value of the right hand 

in Appendix 2 while the left 2 
Thus, if three distinct 

* 

n n One may, for instance, choose to evaluate E2 at w = 0, p and -, to simplify 
the left-hand side of (2.10). Moreover, since E does not depend on Q in its 

final form, a choice of Q which results in considerable simplification of the 

numerical work of evaluating the right hand side of (2.10) is Q = 0. 

2 

2 

Thus, a possible set of equations that results are 

‘I, + n2 + n4 = E2(0) 

‘ IO - ‘14 = E2(f) 

‘ I ~  - ‘ I ~  + n4 = E2($) 

The solution of the above system gives 

no = $ [E2(0) + 2E2(t) + E2($)1 

* 
It is allowable to choose arbitrary values for w since (2.10) is an 
algebraic identity even though the range of w ,  a8 predicted by the solution, 
is restricted for the case of critical inclination. 

10 
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Equation (2.9) can nuv be used t o  express the leading term of the Fourier 

series f o r  cosi / pu in terms of known quantities in the form: 
0 0 

2 2 
+ +i (1 + cos io )  cos 201 

[v0 + n2 COS 20 + n4 cos 401 -5/2 + E2 {+ 3 ( 0  2E) 

e2 1 2 2 4 + - (7 + e )(1 - 2 cos io - 3 COS io) COS 20 2 

4 
32 

(2.13) + - e (1 + cos2io)2(1 + cos 40)l) 

2.3 The F i r s t  Order Term 

With the results of the previous section 

uo, ul, and il, the term of order E in the differential  equation for  the time 

b e C O l t E S  

and use of the known solutioas for  

11 



2 2 2 e E cos i 

p[1 + e cos(4 - w ) ]  

0 (1 + 2 -(4 + 3e ) cos io (1) (1) = 
Ts + T1l 3 

1 2 2 
2 + (- - + 8 cos io)e2 cos 2w - 2e cos io cos(+ - w )  

+ - 1 e cos 2 io cos(34 - w )  + - e 2 2  cos i cos(b+ - 2w)l 
2 12 0 

6 
+ - 3 e(-  2E) [($ + e 2 )(1 - 3 cos 2 io) -5/2 'Os 

2 
P 

2 2 
+ e (1 + cos io) COB 2w] (2.14) 

The notation T';) and T';) has been introduced t o  denote the fact that the 

right hand side of (2.14) consists of two parts. One is purely periodic in + 
and is denoted by T(l) while the remainder, expressed as T (1) a , depends only on 

S 

i (or 5). The terms comprising T(l) are functions of e, io, and w ,  and will 

be studied separately because they give rise to either secular or long-period 

t e n s  (dropping 5% order by one power of E,  after integration in the time 

solution). 

the Fourier expansion of [l + e cos(4 - o r 3 ,  given in Appendix 3, is used. 

It can then be shown that 'l":) becomes 

11 

In order to effect the separation of t,he short-period terms, 

I 

12 
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2 2 e ~(:)(e, io, o) = 2 1 b [I + - - (4 + 3e cos io 
2P 30 2 

2 cos i 

+ b32r- e (1 - 6 cos 2 io) - g 1 (1 - e2 - 7 cos 2 io) cos 201 
2 

I 1 2 2 2  
2 33 0 

+ - b e cos io cos 20 + i$ b3,, e COS i COS 20 

2 2 
+ 4 (1 + cos io) cos 2wl (2.15) 

Note that since T';) comprises the long-perlod terms and is multiplied by E 

in (2.3) one muet evaluate it correct t o  O(E) in order t o  insure the  val idi ty  

of the different ia l  equation for t he  t i m e  correct t o  O(E ). 

achieved f o r  the case of c r i t i c a l  inclination by clubstituting the known 

expansions for e and io (cf. (3.28b*), (3.35'1, (3.37*) and (3.288'1, (3.33.1, 

2 This can be 

(3.36*)) giving the following formal representation of T (1) 

- 
= Ta* (l'*(eo*, im*, E) + Ti;)'(eo*, ioo*, E )  J ic0 - icl cos 2w C 

13 



Again, the explicit evaluation of the coefficients T(')*, i = 0, 1,...4 is a 

formidable task. 

in section 2.2 can be used. 

9.i 

However, a numerical procedure identical to the one proposed 

This consists of numerically evaluating T p )  for any given pair of initial 

values e and i 

of cos 2wc, say cos 2oLv), v = 0, 1, . . .4. 
for five different and consistent (cf. what follows) values 

0 00 

Clearly, the values of UL") must be consistent with the permissible range 
given by the solution near the critical inclination, since now the explicit 

form of (2.19) depends on whether or not i 

was shown in (3.51*) and in(3.52*) that near the critical inclination o(') must 

obey the inequality 

is near the critical value, It 
00 

C 

sin o 
2K1 C 

and possible choices of WL") are 

(2.17) 



- 
if IC > C1 (2.18) 

0 

or  

When each of the above values of ob’) is substituted in to  the right hand side of 

(2.15) one obtains a value for the corresponding T:” which can then be used i n  

conjunction with (2.16) t o  derive a set of f ive  l inear algebraic equations for 

the f ive  unknovn TY’*- The results of such a calculation are s-ieed i n  

Appendix 4. 
i 

If iw is not c r i t i c a l  the form of Tg (’I’ is simplified t o  

(2.20. 

(1) (1) (1) In this case there are only three unknown functions: 

Since w undergoes a secular variation i n  th i s  case one may use the following 

three equally spaced values of o = 0 ,  t, F t o  obtain the f o l l d n g  system of 

three l inear  algebraic equations. 

Tgo , Tg2 , tinti Tg4 

1 %  

15 



(2.21) 

The solution of (2 .21)  gives 

(2 .22)  

With the definition given in Appendix 6 for the short-period terms to O ( E ) ,  

the results are in a form suitable for quadrature, 

Section 2.5 after the terms of O ( E  ) have also been calculated. 

This will be discussed in 
2 

2.4 The Second 0rder.Term 

For abbreviation, the whole expression to order c2  of ( 2 . 3 )  plus the 

terms of order c2 of the right side of ( 2 . 1 2 ) .  are denoted by T ( 2 )  (io,, eo, w ,  I$),  

I 16 



(cf. Appendix 5). 

and only the leading terms eo, ioo axe kept, one may express T(2) as a Fourier 

series in the form 

When the solutions for uo, ul, u2, io, il, i2 are substituted 

17 

Only the first term, $T(2) (io,, eo, w ) ,  is of interest because this is the 

only term that contributes to order E in the solution for the time t. From 

inspection of the expression for T(2) ,  it can be shown that To (2)  (io,, eo, o) 

is of the form 

I 

I 

(2.24) 

The coefficients Too (2)  , To2 (2) , and TLE) can be evaluated by substitution of three 

different values for w in T r ) ( w ) .  The procedure is analogous to the one used 

for equations (2.10) and (2.11) tiad the solution is 



where 

(2.26) 

The definite integral of (2.26) has to be evaluated numerically for w = 0 ,  

n and - with the eo and ioo given by the initial conditions. 2' 

2.5 Integration of the Time Equation 

Using the results of the previous sections equation (2.3) may now be written 

in the following form: 

(1)" - 3/2 (1)* 2 do 
[KO - K1 COS 2 W c ]  + T a b  (To - K1 COS 2 W c )  + ] Q3 + T  

(2.27) + E 2 [Too (2) + TLg) cos 2wC + TLC) cos 4 w c 1  + O ( c 5 " )  



da 
d4 

where - stands for a l l  the short period terms arising from the expression in (2.3) 

t o  order E. This equation holds for all inclinations. 

from the  c r i t i ca l s the  following somewhat simpler form results 

For inclinations away 

( 2 . 2 8 )  3 (2) (2) cos 2 w  + TL:' cos 4 w ]  + O(E + -  + E  [Too +Too  da 
d4 

and is  applicable t o  most cases. 

Integrat  ion 

t = (- 

of (2 .28)  yields 

(1 )  *(1) 3 - ba 
$ + - -  TL2 s in  & + 14 s i n  + 1 s i n  k($ - w )  

so so cos io k=l 

(2)  (2)  SOP3 
aD b2k s i n  k(4 - w )  1 7 7  1 To2 1 sin 4 w  + - tq- cos 3 io k=l + E[TI:)4 + -- sin 2~ + 

so 

where u is given i n  Appendix 6 and t 

i n i t i a l  conditions. 

is 8 constant t o  be determined by the  
0 

Integration of the general equation yields the more 

complicated 

t = (- 

expression 

w 
1/2 (l)* 

ITL2 
C -1/2 (z0 - K~ COS 2-51 -1/2 (1) (wo - w) + E 

V 
,)-3'24 + E T L 1  

19 



3 

cos io k=l  

1/2 i c  .;;I cos 25 + T;;] cos 45 
1/2  + s i n  k(4 - .wc) + e - 

( K O  - K1 COS 25) W k 

(2.30) 

* 
where to is the  integrat ion constant, t o  be determined by t h e  i n i t i a l  conditions. 

The extremely slow motion of t h e  apse i n  case of  c r i t i c a l  inc l ina t ion  is 

responsible for  t he  occurrence of t h e  l a rge  terms of order E -'f2 appearing i n  

(2.30). However, it should be noted t h a t  these  terms, although mult ipl ied by 

e-1/2, are of order E f o r  4 = O ( 1 )  and grow t o  order €-'I2 only when 

(wc - w) = O ( 1 )  which is equivalent t o  4 = O ( E - ~ / ~ ) .  The evaluation of t h e  

in tegra ls  occurring i n  (2.30) leads t o  e l l i p t i c  functions and w i l l  not be 

exhibited here. 
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